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13C nuclear magnetic resonance (NMR) in combination with multivariate data analysis was used to (1)

discriminate between farmed and wild Atlantic salmon (Salmo salar L.), (2) discriminate between

different geographical origins, and (3) verify the origin of market samples. Muscle lipids from 195

Atlantic salmon of known origin (wild and farmed salmon from Norway, Scotland, Canada, Iceland,

Ireland, the Faroes, and Tasmania) in addition to market samples were analyzed by 13C NMR

spectroscopy and multivariate analysis. Both probabilistic neural networks (PNN) and support vector

machines (SVM) provided excellent discrimination (98.5 and 100.0%, respectively) between wild and

farmed salmon. Discrimination with respect to geographical origin was somewhat more difficult, with

correct classification rates ranging from82.2 to 99.3%byPNNandSVM, respectively. In the analysis of

market samples, five fish labeled and purchased as wild salmon were classified as farmed salmon

(indicating mislabeling), and there were also some discrepancies between the classification and the

product declaration with regard to geographical origin.
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INTRODUCTION

In 1970, only about 4% of the world’s seafood came from
fish farms. Today, aquaculture accounts for 32% (1 ). World
production of salmon was 1.24 million tons in 2006. Produc-
tion in Europe constituted 48% of the global production of
salmon; Norway produced 78% of the total European pro-
duction volume in 2006 (2 ). In 1985, 6% of all salmon
consumed around the world was farmed. In 2000, the amount
of farmed salmon consumed had risen to 58% (3 ). Progress in
aquaculture techniques has led to year-round availability of
farmed salmon and lower prices for the consumer. Once
considered an expensive delicacy, salmon is now quite
commonplace in North American, European, and Japanese
diets.
In the European Union, the common organization of the

markets in fishery and aquaculture products comes under
Council Regulation (EC) 104/2000. In October 2002, Com-
mission Regulation (EC) 2065/2001 was adopted that details
the labeling, packaging, and traceability requirements for
fishery and aquaculture products. According to this regula-
tion, fish shall be labeled with specification of the commercial
designation and scientific name, method of production, and

the area in which it was caught. There is a clear trend in the
international market to labeling products with information
about composition and quality. This, together with the in-
creasing production and consumption of fish products includ-
ing salmon, both farmedandwild fish, has led to an increasing
demand for standardized analytical methods efficient in the
authentication of fish products. At present, few reliable
methods exist for the unequivocal determination of the geo-
graphical origin, wild versus farmed specimens, ecological
production, or the life history of the product, data that are
necessary to confirm the traceability documentation of the
products. Recently, relevant methods to study the production
method of fish (wild/farmed) and geographical origin have
been reviewed (4, 5). Potential methods to identify the pro-
duction method of fish (wild/farmed) include morphological
analyses, individual tagging of fish, genetic analyses, carote-
noid content (natural vs synthetic), and analysis of protein/
enzyme profiles of some tissues (4 ).
In the lipids of fish muscle, about 20 fatty acids appear in

relative amounts of >1%, and different species of fish have
characteristic fatty acid profiles (6 ). The variability in the
composition of the tissue fatty acids of fish is very large. In
each type of tissue the fatty acids are bound in different lipid
classes, phospholipids, triacylglycerols, cholesterol esters, etc.,
all with different profiles.
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The composition of muscle lipids may be influenced by
factors such as diet, age, maturity, condition, and reproduc-
tive cycle of the fish, in addition to water, temperature, and
salinity (7 ). The fatty acid profiles examined as methyl esters
by gas-liquid chromatography (GC) have been used as
naturalmarks for stock identificationanalyzingheart,muscle,
or brain tissue for different fish species (8 ). The fatty acid
profile of triacylglycerols of depot fat in fish muscle is more
influenced by the diet thanmembrane phospholipids. Because
the composition of storage lipids in fish reflects the diet (9 ),
farmed fish have a fatty acid profile that differs fromwild fish
(4 ). High-resolution (HR) nuclear magnetic resonance
(NMR) spectroscopy is used increasingly to provide insight,
both qualitatively and quantitatively, into the nature of lipid
mixtures and offers the opportunity to study hetereogenous
lipid mixtures (10-21). Consequently, when the hetereoge-
neous lipid mixture is studied, a 13C NMR spectrum of lipid
extracted from fish muscle contains information about the
lipid classes (10, 15, 18, 19), the fatty acid profile (11 ),
phospholipids (15, 16, 20), the positional distribution of fatty
acids in both triacylglycerides and phospholipids (12, 17), and
cholesterol/cholesteryl content (16 ). Inprevious studies,when
lipid extracts frommuscles of different fish species and origin
were examined, the 13CNMRprofiles allowed discrimination
between fish species and wild and farmed salmon (18, 21).
Stable isotope analysis, in combination with fatty acid analy-
sis, has recently been applied to identify organic farmed
salmon (22 ) and to detect Atlantic salmon from different
sources (23, 24).
For authentication purposes, both when using fatty acid

profile examined with GC and when the total lipid composi-
tion (lipid classes, content of phospholipids, positional dis-
tribution of fatty acids in triacylglycerides/phospholipids
content) was examined by HR 13C NMR, multivariate treat-
ment of data is necessary to distinguish among variations.
Pattern recognition techniques have been frequently and
successfully applied to a variety of applications related to
food composition and authentication (18 ), and species differ-
entiation has been reported by multivariate analysis of phos-
pholipids from canned Atlantic tuna (25 ).

Since September 2001, a European consortium of five
partners from France, Italy, the United Kingdom, and Nor-
wayhasbeenworking todevelop avalidatedmethod toenable
official laboratories to discriminate between wild and farmed
salmon and geographical origin. The analytical methodolo-
gies involved in the project (COFAWS, Confirmation of the
Origin of Farmed and Wild Salmon and Other Fish) include
stable isotope analysis by SNIF-NMR (site-specific natural
isotope fractionation studied by nuclear magnetic resonance
spectroscopy) and IRMS (isotope ratiomass spectrometry) of
the fish oil, water from the fish, and other parts of the fish; 1H
and 13C NMR profiling; and determination of fatty acid
content byGC. The results from the 1HNMR studies showed
that the 1HNMRprofiles of the muscle lipids in combination
with multivariate data analyses allowed discrimination be-
tween wild and farmed salmon (26 ). The 1H NMR spectrum
of lipid extracted from themuscle of salmon gives information
about the lipid classes, level of unsaturation, and molar
fractions of specific fatty acids, such as total n-3 and 22:6n-3
fatty acids (11, 27). Compared to 13C spectra, the 1H NMR
spectra show small chemical shift dispersion and extensive
multiplicity, which often result in several overlaps of signals.
In addition, 1H spectra may contain broad resonances from
phospholipids, and the spectra lack information about the
positional distribution of fatty acids and the total fatty acid

profile. Results from isotopic analysis combined with fatty
acid composition have also been published recently (28 ). The
aim of this study was to test the possibility of using 13CNMR
in combination with multivariate data analysis as a validated
method to enable discrimination between farmed and wild
salmon and geographical origin and to verify the origin of
market samples.

MATERIALS AND METHODS

Fish Samples. Wild Atlantic salmon (Salmo salar L.) (n = 52)
were obtained from Norway, Scotland, Canada, Iceland, and Ire-
land. Farmed Atlantic salmon (n = 143) were obtained from two
different Norwegian, Scottish, Irish, Faroes, and Canadian sea
farms and also from farms in Iceland and Tasmania. Fish from
feeding trials run at North Atlantic Fisheries College, Port Arthur,
Scalloway, Shetland, U.K., are included in the data set. Market
samples (n = 43) were collected from supermarkets in Italy, the
United Kingdom, and Norway. Because not all market samples
were labeled with both productionmethod and geographical origin,
two different subsets of market samples were used in the wild/
farmed and geographical origin predictions. In total, 238 samples
were analyzed, a sufficient number to establish feasibility of classi-
fication.

Lipid Extraction. Lipids were extracted from white muscle of
the fish using a modified Bligh and Dyer procedure (29 ) as
evaluated by Thomas et al. (28 ). Homogenized salmon muscle
(400 g) was extracted in chloroform/methanol (1:2, 1200 mL). The
homogenate was filtered, and the residue was rinsed with chloro-
form (400 mL). This wash was added to the original filtrate, to
whichKCl (0.88%, 400mL)was added. Themixture was shaken for
1 min and then left to separate into phases. The lipid phase was
obtained, and the chloroform was removed by evaporation.

NMR Parameters. Proton-decoupled 13C NMR spectra were
recorded on a Bruker Avance DRX500 (Bruker BioSpin GmbH,
Rheinstetten,Germany) instrument at 125.75MHz.Approximately
70 mg of the lipid extracts was transferred to 5 mmNMR tubes and
diluted with 0.5 mL of deuteriated chloroform (CDCl3, 99.8%
purity, Isotec Inc., Matheson). The NMR experimental parameters
were as follows: spectral width, 200.78 ppm; pulse angle, 30�; dwell
time, 19.8 μs; acquisition time, 2.0 s; number of data points, 101006;
recycle delay, 2.5 s; number of acquisitions, 512 (2048). The NMR
spectra were obtained by using an autosampler. The 1D 13C spectra
were run in a semiquantitative manner, because quantitative mea-
surements require a significantly longer experimental time. Prior to
Fourier transformation, a line-broadening factor of 0.1 Hz was
applied to minimize noise, but not at the expense of resolution
among significant closely spaced resonances. The chemical shift
scale is referred indirectly to tetramethylsilane (TMS) by the triplet
of CDCl3 at 77.00 ppm. Maximum peak height (except for the
solvent peak) was set to 100 for each spectrum. Peak positions and
intensities were obtained for resonances >1% of the maximum
peak intensity within each spectrum. The resulting peak list was
exported for manual alignment (necessary because of small varia-
tions in chemical shift between samples) and multivariate data
analyses. The resulting data matrix consisted of 187 variables for
the 238 samples investigated. The corresponding aligned chemical
shift intensities or principal component scores were used as input for
the multivariate data analysis.

Multivariate Data Analysis. Probabilistic neural networks
(PNN) (30 ) and support vector machines (SVM) (31, 32) were
applied to provide quantitative, supervised classification.

PNN calculations were performed with AI Trilogy (Ward Sys-
tems Group Inc., Frederick, MD). A PNN has three layers: input,
pattern, and summation (30 ). The input layer has as many elements
as there are individual parameters needed to describe the samples to
be classified. In the present case the input parameters were the
selected peak intensities. Although the PNN classification initially
used 187 spectral intensities, the number of inputs was system-
atically decreased via genetic analysis (33 ) and determination of the
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relative importance of each variable, such that the top 10 shifts
could be identified. The PNN operates by defining a probability
density function (pdf) for each class based on the training set data
and an optimized kernel width parameter, also optimized by a
genetic analysis. Each pdf is estimated by placing a Gaussian-
shaped kernel at the location of each pattern in the training set
such that the pdf defines the boundaries for each data class, whereas
the kernel width determines the amount of interpolation that occurs
between adjacent kernels. The probability that a pattern vector will
be classified as a member of a given output data class increases the
closer it is to the center of the pdf for that class. When an input test
vector is presented, the first layer computes distances from the input
vector to the training input vectors and produces a vector the
elements of which indicate how close the input is to a training input.
The second layer sums these contributions for each class of inputs to
produce as its net output a vector of probabilities. Finally, a
complete transfer function on the output of the second layer picks
the maximum of these probabilities. This is then presented as the
predicted class; however, the actual classification probabilities may
be examined. This approach also allows the user to set a minimum
probability threshold below which the algorithm will not attempt a
classification prediction. Instead, the sample in question would be
presented as not classified. This situation occurs when a new sample
presented for classification is too different from any of the samples
used in the training set.

Both leave-one-out (LOO) cross-validation (CV) and the use
of separate training and validation data sets were used to estimate
the accuracy of the predictions. To evaluate the statistical signifi-
cance of the predictions and to ensure that most samples
are represented at some time in the validation data set, multiple
runs of different randomly chosen subjects, split into training and
validation sets, were performed. Model selection with PNN in-
volved LOO CV of the training data set. However, the separate
validation data set (not used in any way in the model development)
was used to assess classification accuracy. Although the most
important variables in the classification were determined,
there are limitations in quantifying the relative importance of an
input variable. When one is dealing with nonlinear models, the
concept of the contribution of a variable is an imprecise concept,
because the effect of a variable on a model depends heavily on the
values of all other variables. This uncertainty exists in any analysis
of complex collections of variables. Running the PNN calculation
many times may frequently lead to many slightly different solutions
with different combinations of variables, each of which may yield
equally accurate classifications. The relative importance of vari-
ables only has meaning when compared to other values from the
same network. This issue is also of relevance in the attempt to
identify specific components or fatty acids that relate to classifica-
tion accuracy. There may be numerous combinations of different
chemical shifts that lead to equally accurate classification; one
should be careful, therefore, to avoid overinterpretation of specific
results. Here we report the most frequently observed significant
variables.

SVM were developed for binary classification (31, 32). SVM
calculations were performed with Tiberius v6.02 (Tiberius Data
Mining, Melbourne, Australia). In class separation by SVM, the
optimal separating hyperplane between the two classes is searched
for by maximizing the margin between the classes’ closest points.
Those training points lying on one of the hyperplanes and the
removal of which would change the solution found are called
support vectors, and the middle of the margin is the optimal
separating hyperplane. An SVM classifier depends only on the
support vectors, and the classifier function is not influenced by
the whole data set, as may be the case for many neural network
systems as well as partial least-squares analyses. For overlapping
classes, data points on the “wrong” side of the discriminant margin
are weighted down to reduce their influence. When a linear separa-
tor cannot be found, data points are projected (via kernel techniques
involving Gaussian radial basis functions or polynomials) into a
higher dimensional space where the data points effectively become
linearly separable. SVMs have many favorable properties. They are

robust against high dimensionalities (a large number of variables)
and ill-behaved distributions and generally exhibit good perfor-
mance without any feature selection. Most significantly, general-
ization ability is also robust. Whereas most learning techniques do
not perform well on data sets where the number of features is large
compared to the number of samples, SVMs are believed to be an
exception. Traditional neural network (and partial least-squares)
approaches are based on the empirical risk minimization (ERM)
principle. ERM does not necessarily produce a good model that
generalizes well to unseen data due to overfitting phenomena. The
foundation of SVM embodies the structural risk minimization
(SRM) principle, which has been shown to be superior to the
ERM principle. SRM minimizes an upper bound on the expected
risk, as opposed to ERM that minimizes the error on the training
data. To guarantee an upper bound on generalization error, the
capacity of the learned functions must be controlled, that is, by the
Vapnik-Chervonenkis (VC) dimension. According to the SRM
principle, a function that describes the training data well (minimizes
the empirical risk) and belongs to a set of functions with lowest VC
dimensionwill generalizewell regardless of the dimensionality of the
input space. It has been shown that maximizing the margin distance
between the classes in the SVMmethod is equivalent to minimizing
the VC dimension. Therefore, SVM embodies excellent general-
ization in its theory.

The largest peaks in MR spectra are not necessarily the most
informative. In the absence of scaling, variation in these regions can
dominate and obscure systematic variation of interest in low-
intensity regions. Thus, variable stability scaling (VAST) (34 ) was
used before further analysis. The stability parameter used is the ratio
of the standard deviation and mean of each variable. VAST can be
applied in a supervised manner, in that the coefficient of variation
within each prior class can be calculated separately and then the
mean of the class coefficients of variation used as the stability scale
weight:

supervised VAST scale weight ¼ 1

n

Xn

j¼1

xj

σj

Figure 1. 13C NMR carbonyl region (173.4-172.0 ppm) of lipids extracted
from salmon muscle of four different origins: (from top) wild salmon from
Norway (NW), Scotland (SW), and Ireland (IW) and farmed salmon from
Norway (NF). The position of fatty acids in triacylglycerols is designated
(sn1,3 or sn2).
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xj and σj denote the mean and standard deviation of a variable x for
the jth class, respectively, and n is the total number of classes. This
method down-weights variables that are the least stable, especially
within each prior class of interest, and may improve distinction
between the classes in subsequent multivariate analysis.

RESULTS AND DISCUSSION

Interpretation of 13C NMR Spectra. 13C NMR spectro-
scopy provides a fingerprint of the specific lipids extracted
from salmon muscle. The interpretation of spectra of lipid
extracted frommuscle of farmed and wild salmon is given in
Figures 1-3 and is based on published data (11, 12). In
general, the chemical shift in each region depends on factors
such as the type of glycerol ester (i.e., triacylglycerols,
diacylglycerols, or monoacylglycerols), stereospecific
conformation (fatty acids in sn1,3 or sn2 in acylglycerols),
and for unsaturated fatty acids; the number and position of
double bonds (11 ).
Carbonyl carbons in triacylglycerols appear in the region

of 173.4-172.0 ppm. Figure 1 shows the carbonyl region of
lipids extracted from salmon of four different origins (wild
salmon from Norway (NW), Scotland (SW), and Ireland
(IW) and farmed salmon from Norway (NF)). Peaks from
the main n-3 fatty acids in sn1,3 and sn2 positions of the
triacylglycerols can be identified in this region. Even though
some differences between the four spectra can be seen, it is
difficult to conclude whether there are differences among
groups on the basis of this spectral region.

Olefinic carbon atoms appear in the 13C NMR spectrum
between 132.5 and 126.5 ppm. Figure 2 shows this region of
salmon lipids from the four selected origins (wild salmon
from Norway (NW), Scotland (SW), and Ireland (IW) and
farmed salmon from Norway (NF)). Information about
unsaturated fatty acids can be obtained in this region.
Examples of intensities that show relatively large variation
among the samples are peaks assigned to 20:1 and 22:1 fatty
acids (129.75 and 129.88 ppm), in addition to the peak
arising from 18:2n-6 (at 130.2 ppm) in the spectrum of
farmed fish. This fatty acid is abundant in vegetable oil,
and the spectrum of the farmed fish (Figure 2NF) illustrates
that the feed contained raw material of vegetable origin.
Aliphatic carbon atoms (ω3 carbon atoms) give rise to

peaks in the region 32.0-31.3 ppm (Figure 3). Also in this
region, it is clear that the farmed fish (Figure 3, NF) has a
relatively high level of n-6 fatty acids, abundant in vegetable
oils, compared to the wild fish.
However, although characteristic resonances may be ob-

served for various classes or groupings of samples, such

Figure 2. 13C NMR olefinic region (132.5-126.5 ppm) of lipids extracted
from salmon of four different origins: (from top) wild salmon from Norway
(NW), Scotland (SW), and Ireland (IW) and farmed salmon from Norway
(NF). Also, the three most significant chemical shifts in the PNN wild/farmed
classification are highlighted. ω, carbon number from the methyl end; FA,
fatty acid.

Figure 3. 13C NMR aliphatic region (32.0-31.3 ppm) of lipids extracted
from salmon of four different origins: (from top) wild salmon from Norway
(NW), Scotland (SW), and Ireland (IW) and farmed salmon from Norway
(NF). ω, carbon number from the methyl end; FA, fatty acid.
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visual inspection is generally insufficient to unambiguously
identify any given class without multivariate methods that
consider all of the relevant peaks and combinations thereof
to discriminate among classes.

Discrimination between Wild and Farmed Fish. Several
different calculations were undertaken, involving predic-
tions using all of the samples, as well as creating classification
models from training and validation data sets of different

numbers of samples chosen randomly. Both PNN and SVM
analyses were implemented.
With the PNN analysis, and using all 187 chemical shifts,

LOO CV analysis gave correct classifications for 47 of 52
wild salmon and for 136 of 143 farmed salmon.
Systematically reducing the number of chemical shifts to

the most significant 12 shifts (128.31, 127.92, 127.60, 61.97,
29.43, 29.04, 29.00, 28.94, 27.15, 26.46, 22.64 ppm), resulted

Table 1. Country of Origin PNN Analysisa

1 2 3 4 5 6 7 total

classified as 1 43 1 0 0 0 0 1 45

classified as 2 1 43 0 0 0 0 0 44

classified as 3 0 0 5 0 0 0 0 5

classified as 4 2 0 0 19 0 0 0 21

classified as 5 0 0 0 0 18 0 0 18

classified as 6 0 1 0 0 0 5 0 6

classified as 7 0 0 0 0 0 0 4 4

total 46 45 5 19 18 5 5 143b

true-positive ratio 0.934 0.955 1.0 1.0 1.0 1.0 0.8

false-positive ratio 0.020 0.010 0.0 0.016 0.0 0.007 0.0

true-negative ratio 0.979 0.989 1.0 0.983 1.0 0.992 1.0

false-negative ratio 0.065 0.044 0.0 0.0 0.0 0.0 0.2

sensitivity (%) 93.5 95.6 100 100 100 100 80

specificity (%) 97.9 98.9 100 98.4 100 99.3 100

aCountry of origin: 1, Norway; 2, Scotland; 3, Iceland; 4, Ireland; 5, Canada; 6, Faroes; 7, Tasmania. All variables (146� 143) (leave-one-out cross-validation). b 93.8% correct
(137), 4.1% incorrect (6), and 2.1% not classified (3).

Table 2. Country PNN

1 2 3 4 5 6 7 total

Train

classified as 1 26 2 0 0 0 0 1 29

classified as 2 3 30 0 2 0 0 0 35

classified as 3 0 0 4 0 0 0 0 4

classified as 4 0 0 0 10 0 0 0 10

classified as 5 0 0 0 0 13 0 0 13

classified as 6 0 0 0 0 0 3 0 3

classified as 7 0 0 0 0 0 0 2 2

total 29 32 4 12 13 3 3 96a

true-positive ratio 0.896 0.937 1.0 0.833 1.0 1.0 0.666

false-postive ratio 0.044 0.078 0.0 0.0 0.0 0.0 0.0

true-negative ratio 0.955 0.921 1.0 1.0 1.0 1.0 1.0

false-negative ratio 0.103 0.062 0.0 0.166 0.0 0.0 0.333

sensitivity (%) 89.7 93.8 100 83.3 100 100 66.7

specificity (%) 95.5 92.2 100 100 100 100 100

Validation (Every Third Validation)

classified as 1 13 0 0 1 0 0 0 14

classified as 2 1 10 0 2 0 0 0 13

classified as 3 0 0 0 0 0 0 0 0

classified as 4 0 0 0 4 0 0 0 4

classified as 5 0 0 0 0 6 0 0 6

classified as 6 0 2 1 0 0 2 0 5

classified as 7 0 0 0 0 0 0 2 2

total 14 12 1 7 6 2 2 44b

true-positive ratio 0.928 0.833 0.0 0.571 1.0 1.0 1.0

false-postive ratio 0.033 0.093 0.0 0.0 0.0 0.071 0.0

true-negative ratio 0.966 0.906 1.0 1.0 1.0 0.928 1.0

false-negative ratio 0.071 0.166 1.0 0.428 0.0 0.0 0.0

sensitivity (%) 92.9 83.3 0.0 57.1 100 100 100

specificity (%) 96.7 90.6 100 100 100 92.9 100

a 87.1% correct (88), 7.9% incorrect (8), and 5.0% not classified (5). b 82.2% correct (37), 15.6% incorrect (7), and 2.2% not classified (1).
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in 47 of 52 wild salmon being predicted correctly (sensi-
tivity= 90.38% and specificity= 97.9%) as were 140 of 142
farmed samples (1 sample was not classified). Overall, the
predictions were 95.9% correct (187) and 4.10% incorrect
(8 ). The three most significant chemical shifts are shown in
bold font in Figure 2; these were all in a crowded area of the
olefinic region, which made unambiguous assignment of
peaks difficult.
VAST scaling was then applied, and the samples were

divided into training data (used to create the model) and a
validation data set that was not used in any way during the
model development. For LOO CV, using all samples for the
wild and farmed classifications, 52 of 52 (wild) and 143 of 143
(farmed) were correctly predicted. With a training set of 130
samples, 34 of 34 (wild) and 96 of 96 (farmed) were correctly
predicted, whereas in the corresponding validation set 18 of
18 (wild) and 47 of 47 (farmed) were correctly classified. We
further reduced the training set to 100 samples and 28 of 28
(wild) and 72 of 72 (farmed) were accurately classified,
whereas the validation predictions resulted in 20 of 24 (wild)
and 71 of 71 (farmed) correct predictions. Finally, using only
the top 10 chemical shifts, all samples, and LOO CV, all
samples were predicted correctly; similarly, using a training
set of 129 samples also resulted in correct classifications for
both wild (37 of 37) and farmed (92 of 92); the corresponding
validation set of 66 samples was almost as successful, cor-
rectly predicting 14 of 15 (wild) and 51 of 51 (farmed), giving
a correct classification rate of 98.5% (65 of 66).
For the SVManalysis, andwild versus farmed calculations,

135 samples were used in the training data set (36 wild/99

farmed) and 59 samples (15 wild/44 farmed) in the validation
set, with all samples being correctly classified. Ten randomly
chosen wild and farmed training and validation sets were
created, and all samples were correctly predicted using this
method (100%).
The observation that such methods can so accurately

model the wild or farmed status of salmon is consistent with
related studies within the COFAWS consortium project.
Multiprobe/multielement isoptopic analyses in combination
with GC fatty acid composition also allowed for complete
discrimination between authentic samples of wild and
farmed salmon (28 ). This discrimination occurred despite
variations in season, location (geographical origin), farming
practice, year of capture, and diet, although these factors
contribute to the overall intragroup variability observed for
each class. Similarly, 1HNMRanalyses combinedwith SVM
also resulted in complete discrimination of wild and farmed
salmon (26 ).

Discrimination Regarding Geographical Origin of Farmed

Salmon. Predictions of geographical origins are somewhat
more difficult, with country of origin predictions using PNN,
LOO CV, and all variables being shown in Table 1. Overall,
93.8% (137) were correctly classified, 4.1% (6 ) incorrectly
classified, and 2.1% (3 ) not classified. Creating training data
from two-thirds of the samples and validation sets from the
remaining data and recalculating still generated reasonably
good predictive results (Table 2). In particular, for the
training data, 87.1% (88) were correct, 7.9% (8 ) incorrect,

Table 3. Market Samples: Wild Versus Farmed Predictions by SVM

sample label predicted

1 farmed farmed

2 farmed farmed

3 farmed farmed

4 farmed farmed

5 farmed farmed

6 farmed farmed

7 farmed farmed

8 farmed farmed

9 farmed farmed

10 farmed farmed

11 farmed farmed

12 farmed farmed

13 farmed farmed

14 farmed farmed

15 farmed farmed

16 farmed farmed

17 farmed farmed

18 farmed farmed

19 farmed farmed

20 farmed farmed

21 farmed farmed

22 farmed farmed

23 farmed farmed

24 wild farmed ***error***

25 wild farmed ***error***

26 wild farmed ***error***

27 wild farmed ***error***

28 farmed farmed

29 farmed farmed

30 farmed farmed

31 farmed farmed

32 farmed farmed

33 farmed farmed

34 wild farmed ***error***

Table 4. Market Samples: Country of Origin Predictions by SVMa

sample predicted origin labeled origin

1 Norway Norway

2 Norway Norway

3 Norway Norway

4 Norway Norway

5 Norway Norway

6 Norway Norway

7 Norway Norway

8 Norway Norway

9 Norway Norway

10 Norway Norway

11 Norway Norway

12 Ireland Norway ***error***

13 Norway Norway

14 Norway Norway

15 Faroes Norway ***error***

16 Norway Norway

17 Scotland Norway ***error***

18 Norway Norway

19 Ireland Norway ***error***

20 Norway Norway

21 Ireland Norway ***error***

22 Ireland Norway ***error***

23 Norway Norway

24 Norway Norway

25 Norway Norway

26 Ireland Norway ***error***

27 Norway Norway

28 Norway Norway

29 Scotland Scotland

30 Norway Norway

31 Norway Norway

32 Norway France ***Error***

33 Scotland Scotland

34 Scotland Scotland

35 Scotland Scotland

a Sample number does not correspond to Table 3 (see Materials and Methods).
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and 5.0%(5 ) not classified, whereas for the validation test
set, 82.2% (37) were correctly classified, 15.6% (7 ) incorrect,
and 2.2% (1 ) not classified. It is recognized that there are
limitations with respect to the number of samples represent-
ing some classes in this analysis.
Country of origin was also investigated using the SVM

approach. LOO CV on all 146 samples resulted in 1 error
(99.3% correct). Similarly, 1HNMR and SVM analysis (25 )
demonstrated that approximately 93% of the samples could
be accurately predicted.
The classification accuracy by SVM is similar to PNN in

the training set. However, the results by SVM are slightly
better than those yielded by the PNN approach in the
validation set. SVMs have been shown to be robust with
respect to a low ratio of training samples to the dimension-
ality of the input data and ill-behaved distributions. They are
able to automatically learn difficult nonlinear boundaries
and deliver a reproducible solution for a given training set
and parameter settings. Differences in the generalization
ability of SVM and PNN are related to differences in
optimization strategies for the two methods, which may
favor the SVM approach.

Market Samples. One of the major objectives of these
studies is to be able to reliably detect labeling fraud. There-
fore, two sets of datawere tested with respect to prediction of
wild versus farmed (Table 3) and geographical origin
(Table 4). Table 3 shows the results for 34 market samples
in the wild/farmed prediction by SVM. Although the major-
ity appear to be correctly labeled, we note that 5 samples
marketed and labeled as “wild” appear to have been
“farmed” in origin. Related discrepancies in labels were also
demonstrated through isotopic analyses (28 ) and 1H NMR
(26 ).Table 4 shows the predictions for country of origin for a
set of 35 samples. Although many appear to be consistent
with the labels and available information, it is clear that
discrepancies also exist with respect to geographical origins.
In conclusion, 13C NMR spectra of heterogeneous lipid

extracts from muscle of farmed and wild salmon contain
enough information (fatty acid profile, lipid classes, and
positional distribution) to discriminate between wild and
farmed salmon. Discrimination with respect to geographical
origin was somewhat more difficult, but the geographical
origin classification may suffer from limitations with respect
to the number of samples representing some classes. The five
market samples apparently mislabeled as wild Atlantic sal-
mon, as confirmed by other analysis (26, 28), were also
readily detected by the method described here, which shows
the potential of this technique for verification of production
method of salmon.

ABBREVIATIONS USED

HR NMR, high-resolution nuclear magnetic resonance;
GC, gas-liquid chromatography; PNN, probabilistic neural
networks, SVM, support vector machines; SNIF-NMR, site-
specific natural isotope fractionation NMR; IRMS, isotope
ratio mass spectrometry; TMS, tetramethylsilane; pdf, prob-
ability density function; LOOCV, leave-one-out cross-valida-
tion; ERM; empirical riskminimization, SRM; structural risk
minimization; VC, Vapnic-Chervonenkis; VAST, variable
stability scaling.
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